Set 3

Grade: XII Subject: Physics (102)
Full marks: 75 (11 marks Obj+ 64 marks Sub)
Time: 3 Hours

Attempt all the questions:

Group "A"

Rewrite the correct option in your answer sheet:
$11 \times 1=11$

1) The spokes are used in bicycle wheel to
a) Increases fricitional force
b) Decreases fricitional force
c) Increases moment of inertia
d) Increase angular momentum
2) An iceberg floats in sea water of density of $1 \mathrm{~g} / \mathrm{cc}$. the \% of volume outside water is if density of iceberg is $0.9 \mathrm{~g} / \mathrm{cc}$
a. 90%
b. 10%
c.45\%
d. 5%
3) Two solids A and B floats in water. A floats with $2 / 3^{\text {rd }}$ of its volume immersed and B floats with half of its volume immersed. The ratio of density of A and B is
a. $4: 3$
b. 3:4
c. 1:3
d. 3:1
4) The weight of 1 kg block of iron having volume $1.3 \times 10^{-4} \mathrm{~m}^{3}$ immersed in water is measured by spring balance is
a. 6.7 N
b. 6 N
c.9.7 N
d. 7.7 N
5) The efficiency of heat engine can be increased by
a) Decreasing sink temperature
b) Increasing source temperature
c) Increasing difference between source and sink temperature
d) All of these
6) The displacement of a particle is given by $5 \mathrm{X} 10 \sin (100 \mathrm{t}-50 \mathrm{x})$ where x and y are metre. The velocity of the wave is
a. $2 \mathrm{~m} / \mathrm{s}$
b. $150 \mathrm{~m} / \mathrm{s}$
c. $500 \mathrm{~m} / \mathrm{s}$
d. $2500 \mathrm{~m} / \mathrm{s}$
7) The fact that light can be polarized establish the light
a) Travels in the form of particles.
b) Is an electromagnetic wave
c) Is a longitudinal wave
d) Is a transverse wave
8) Kirchhoff's second law is based on the law of conservation of:
a. Momentum b. Charge
c. Mass
d. Energy
9) A resistance of 5Ω is connected in the left gap of a meter bridge and 15Ω in the other gap. The position of the balancing point is
a. 25 cm
b. 15 cm
c. 60 cm
d. 75 cm
10) A potentiometer wire is 10 m long. It has a resistance 20Ω. It is connected in series with a battery of 3 V and negligible internal resistance and resistance of 10Ω. The potential gradient along the wire in volt/meter is
a. 0.02
b. 0.1
c. 0.2
d. 1.2
11) An electron of mass m and charge e acceleartated from rest through a potential difference of v volts in vacuum. The speed of electron will be
a. $\sqrt{\frac{m}{e V}}$
b. $\sqrt{\frac{e V}{m}}$
c. $\sqrt{\frac{e V}{m}}$
d. $\sqrt{\frac{2 e V}{m}}$

Group "B"

Short answer questions:
$8 \times 5=40$
1)
a) Define angular momentum .
b) A plane revolves around a massive star in a high elliptical orbit. Is its angular momentum constant over the entire orbit?
c) A string is wrapped around the rim of a wheel of moment of inertia $0.20 \mathrm{~kg} \mathrm{~m}^{3}$ and radius 20 cm . The wheel is free to rotate about its axis as in Fig. initially, the wheel is in rest. The string is now pulled by a force of 2 N . Find the angular velocity of the wheel after 5.0 seconds.

OR

a) Define simple harmonic motion and state it's equation.
b) The displacement of an oscillating object as a function of time shown in Fig. Calculate its (i) time period (ii) frequency and the amplitude? 2+3
2)
a) Define the term centre of buoyancy and meta centre. Why should the metal centre lie above the centre of gravity of floating body?
b) Explain the equation of continiuity and its application.
c) Fig. shows a liquid being pushed out of tube by pressing a piston. The area of crosssection of the piston is $1.0 \mathrm{~cm}^{2}$ and that of the tube at the outlet is $20 \mathrm{~mm}^{2}$. If the piston is pushed at a speed of $2 \mathrm{~cm} / \mathrm{s}^{-1}$. What is the speed of the outgoing liquid? $2+1+2$

3)
a) Explain the meaning of work done by system and work done on the system.
b) Describe how work done by gas during expansion can be calculated from indicator (P-V) diagram.
c) A tyre pumped to a pressure of 6 atmosphere bursts suddenly. Calculate the temperature of escaping air. Given initial room temperature is 150 C and γ for air is 1.4.
4)
a) What are the factors on which velocity sound in the open air depends and in what may they do so?
b) It is notices that a sharp made in front of a flight of stone steps gives to a ringing sound.
c) Explain this assuming that each step is 0.25 m dip estimate the frequency fo the sound. (Velocity of sound may be taken to be $340 \mathrm{~ms}^{-1}$)
5)
a) Describe the concept of perfect conductors.
b) Distinguish them from superconductors.
c) A moving coil galvanometer of resistance 10 produces full scale deflection when a current 25 mA is passed through it. How will you convert the galvanometer into a voltmeter range (0-120V?

$$
1+1+3
$$

6)

a) Differentiate between solenoid and tofold.
b) Magnetic field lines produced by a current carrying solenoid is as shown in Fig. Describe the nature of the magnetic field lines through and around the current carrying solenoid.

c) A solenoid is designed to produce a magnetic field of 0.027 T at its centre. It has radius 1.4 cm and length 40.0 cm , and the wire carry a maximum current of 12.0 A . What minimum number of turns must the solenoid have? $1+2+2$
7)
a) Write an expression for energy stored in inductor.
b) Soft iron is used in making core of a transformer, why? Explain.
c) The ratio of number of turns in the primary and secondary windings of a stup-up transform is $1: 200$. It is connected at a.c. mains of 2 V . Calculate:
i) Voltage developed in secondary
ii) The current in the secondary when primary current is 2 A . $1+2+2$
8)
a) Which property of a semiconductor did permits it to be used as a rectifier? Explain the working of a PN diode whe is forward biased and reverse biased. What is a truth table? Draw such a for two inputs AND gate.
$1+2+2$
b) Define radio isotopes.
c) A radioactive source has decayed to $1 / 128^{\text {th }}$ fo its initial activity after 50 days. What is its half - life? What are medical uses of nuclear radiation? 1+3+1

Group "C"

Long answer questions:

$3 \times 8=24$
9)
a) Discuss Huygen's principle. Use it explain reflection of light.
b) Light travels through a pool of water in a parallel beam incident on the horizontal surface. Its speed water is $2.2 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Calculate the maximum angle which the beam can make with vertical if light is to escape into the air $10^{8} \mathrm{~m} / \mathrm{s}$. Ans: 47.2^{0}
10)
a) Write the cause of electric current thermo electricity.
b) Distinguish between seebeck effect and Peltier effect. Define inversion temperature and write the factors on which it depends.
c) Thermo e.m.f. Cu-Fe thermocouple varies temperature at $\theta^{0} \mathrm{C}$) as, $E(\mu V)=14 \theta-0.02 \theta^{2}$. Determine neutral and inverse temperature. $2+3+3$

OR
a) Discuss series circuits contains combination of resistance, capacitance and inductance.
b) Describe series resonance condition.
c) A 100 V a.c. source frequency 50 Hz is connected to a LCR circuit with $\mathrm{L}=8.1 \times 10-3$ $\mathrm{H}, \mathrm{C}=12.5 \mu \mathrm{~F}$ and $\mathrm{R}=\Omega$, all connected in series. Find the potent difference across the resistance.
11)
a) State Bohr's postulates for atom model.
b) Calculate the energy of electron in $\mathrm{n}^{\text {th }}$ orbit of hydrogen atom.
c) Compare the velocity of the electron in the $9^{\text {th }} \mathrm{B}$ orbit. How many times does the electron aroung the orbit in 1 s ?

