Model Quesiton – 10

Subject : Mathematics XII (Mat. 402/008)

Time : 3 hrs

Attempt all the questions:

Group "A"

Rewrite the correct option in your answer sheet:

- How many numbers between 300 and 3000 can be formed with the digits 0, 1, 2, 3, 4 and 5 1) without repetitions?
 - a. 180 b. 195 c. 175 d. 200
- The value of k so that the equation $2x^2 (5 + k)x + 8 = 0$ has rotos numerically equal but 2) opposite in sign is
- a. k = -5 b. k = 5 c. k = 3 d. k = 8 $\cos\left(\tan^{-1}\frac{3}{4}\right) =$ 3) a. $\frac{4}{5}$ b. $\frac{3}{5}$ c. $\frac{5}{3}$ d. $\frac{5}{4}$
- 4) Angle between the diagonals of a cube is

a.
$$\cos^{-1}\left(\frac{1}{3}\right)$$

b. $\cos^{-1}\left(\frac{1}{2}\right)$
c. $\cos^{-1}\left(\pm\frac{1}{3}\right)$
d. $\cos^{-1}\left(\pm\frac{1}{2}\right)$
5) The value of I $(\vec{j} \times \vec{k}) + \vec{j} (\vec{k} \times i) + \vec{k} (\vec{j} \times i)$ is
a. 0 b. 1 c. 2 d. 3

The differential co-efficient of x^x is 6)

a.
$$x^{x} \log x$$
 b. $x^{x} \left(\log x + \frac{1}{x} \right)$ c. $x^{x} \left(\log x + 1 \right)$ d. $x^{x} - 1$

7) The value of
$$\int \frac{dx}{1-2\cos x}$$
 is
a. $\frac{1}{\sqrt{3}} \log \left(\frac{\sqrt{3} \tan \frac{x}{2} - 1}{\sqrt{3} \tan \frac{x}{2} + 1} \right)$
b. $\frac{1}{\sqrt{3}} \log \left(\frac{1 + \sqrt{3} \tan \frac{x}{2}}{\sqrt{3} \tan \frac{x}{2} - 1} \right)$
c. $\sqrt{3} \log \left(\frac{\sqrt{3} \tan \frac{x}{2} - 1}{\sqrt{3} \tan \frac{x}{2} + 1} \right)$
d. $\sqrt{3} \log \left(\frac{1 + \sqrt{3} \tan \frac{x}{2}}{\sqrt{3} \tan \frac{x}{2} - 1} \right)$

8)

Intercepts made on the co-ordinate axes by the plane 2x-y+2z = 4 are a. 2, 2, -4 b. 2, 2, 4 c. 2, -4, 2 d.2, 2, 2

F.M. 75

11X1=11

9)

The product of two regression co-efficient is

10) The system of equations:

> $x_1 + x_2 + x_3 = -3$; $3x_1 + x_2 + 2x_3 = -2$; $2x_1 + 4x_2 + 7x_3 = 7$ a. consistent b. Inconsistent

c. consistent and finite solutions d. consistent and infinite many solutions

11) If a body of mass 0.5 kg and initially at rest, is subjected to a force of 2N for 1 sec then the velocity acquired during the second is

a. 4m/s b. 5 m/s c. 3 m/s d. 40 m/s

Group "B"

8X5=40

Show that: $\sum_{n=1}^{\infty} \frac{n^2}{(n+1)!} = e - 1$ 12)

Short answer questions:

- Using De Moivre's theorem find the fourth root of $-\frac{1}{2} + \frac{\sqrt{3}}{2}i$ 13)
- 14) Find the direction cosines of the two lines which satisfy the relations 2l + 2m - n = 0 and lm + mn + nl = 0.

15)

a) Find the correlation co-efficient between the two variables:

No. of pair of observations Standard deviations

Х	Y
10	10
2.05	2.41
42	58

Sum of the squares of devations from their respective means Sum of the products of deviations of X and Y from their respective means = 36

- b) A committee of 5 is to be formed out of 8 men and 6 women. Find the probability that in the committee there will be 3 men and 2 women.
- Find from first principle, the derivative of sin (log x). 16)

17) Evaluate:
$$\int \frac{dx}{2\sin x + 3\cos x}$$

18) Solve the following LP problem, using simplex method

> $2x + 3y \le 24$ $x + 2y \le 4$ $x, y \ge 0$

19) A stone of mass 1 kg falls from the top of a vertical cliff. After (i) falling for 3 seconds (ii) descending 800 cm, it reaches the foot of the cliff and penetrates 25 cms into the sand. Find the resistance offered by the sand. ($g = 9.8 \text{ m/s}^2$)

Group "C"

Long answer questions:

20)

- a) A committee is to be chosen from 12 men and 8 women and is to consist of 3 men and 2 women. How many such committee can be formed?
 2
- b) Let G ={0, 1, 2}. Form a composition table for G under addition modulus 3. Find the inverse element of 2.
- c) If the quadratic equations $x^2 + qx + pr = 0$ and $x^2 + rx + pq = 0$ have one root common prove that: p + q + r = 0 2
- d) Using the principle of mathematical induction, show that:

$$1^{2} + 2^{2} + 3^{2} + \dots n^{2} = \frac{n(n+1)(2n+1)}{6}$$

21)

- a) Verify Lagrange's mean value theorem for the functions: $f(x) = x^3 + x^2 6x$ in [-1, 4].
- b) Solve the differential equations: $(1 + x^2)\frac{dy}{dx} + y = e^{\tan^{-1}x}$.

22)

a) Find the angle between the two lines whose direction cosines are given by

4I + 3m - 2n = 0 and Im - mn + nI = 0

b) Find the equation of the plane through the intersection of the planes x + y + z = 6 and 2x + 3y + 4z + 5 = 0 and perpendicular to the plane 4x + 5y - 3z = 8.

Answers:

Group A

1) a	2) a	3) a	4) a
5) b	6) c	7) a	8) c
9) d	10) c	11) a	

3×8=24

Group B

13) -1,
$$\pm \left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right), \pm \left(\frac{\sqrt{3}}{2} - \frac{1}{2}i\right)$$

14) $l = \frac{1}{3}, m = -\frac{2}{3}, n = -\frac{2}{3}$
15) (a) 0.73 (b) $\frac{60}{143}$
16) $\frac{1}{x}\cos(\log x)$
17) $\frac{1}{x}\log\frac{\sqrt{13} + 2 - \tan\frac{x}{2}}{\sqrt{13} - 2 + \tan\frac{x}{2}} + C$
18) Max.P = 30x + 20y, when x = 11, y = 2
19) 33 kg wt.

Group C

