Model Quesiton – 7

Subject : Mathematics XII (Mat. 402/008)

Time	: 3 hrs	F.M. 75				
Attem	pt all the question	ons:				
Group "A"						
Rewri	ite the correct op	11X1=11				
1)	If α is a complex number such that: $\alpha^2 + \alpha + 1$ then α^{31} is					
	a . α	b. α^2	c. 0	d. 1		
2)	There are 5 subjects in a exam. The number of ways in which a student may fail is					
	a. 16	b. 15	c. 32	d. 31		
3)	If tan $(x+y) = 33$ and $x = \tan^{-1}3$ then $y = ?$					
	a. 3:10	b. $\tan^{-1}\left(\frac{3}{10}\right)$	c. $\tan^{-1}\left(\frac{3}{8}\right)$	d. $\frac{10}{3}$		
4)	The curve represented by $x = a$ sec t and $y = b$ tan t is					
	a. circle	b. parabola	c. ellipse	d. hyberbola		
5)	The d.c.s of any normal to xy plane are					
	a. 1, 0, 0	b. 0, 1, 0	c. 0, 0, 1	d. 1, 1, 0		
6)	(1, 0, 0) X (0, 1, 0) equals					
	a. (1, 1, 0)	b.0	c. (0, 0, 1)	d.2		
7)	The correlation coefficient between two variables x and y is					
	a. Postive		b. Negative			
- 1	c.Symmetrical		d.non- Symmetrica	al		
8)		gent to the curve y =				
	a. 0	b2	c. 2	d. 16		
9)	$\int \sin^{-1} x dx + \int \cos^{-1} x dx \text{equals}$					
	a. 0	b. $\frac{\pi}{2}$	c. $\frac{\pi}{2}x$	d. $\frac{\pi}{2}x + c$		
10)	 An LPP is called standard maximization problem if a. The objective function is to be maximized. 					
	b. All decision variables are non- negative. c. All constraints are in the form $a_i x_i + a_j x_j + \dots + a_n x_n \le b$					

d. All

11) The resultant of two like parallel forces P and Q is

Group "B"

Short answer questions: 12)

- a) If the roots of $ax^2 + bx + c = 0$ be in the ratio 3:4. Prove that $12b^2 = 49$ ac. 3
- b) Using Mathematical induction, prove that: $1 + 3 + 5 + \dots + (2n-1) = n^2$. 2
- 13)
 - a) Find the number of permutations of the digits 1, 2, 7, 2, 7, 4, 5, 2 taken all at a time. 2
 - b) If the successive coefficients in the expansion of $(1+x)^n$ are 28, 56 and 70. Find n. 3
- 14)
 - a) Prove that $\sin^{-1}(\cos \sin^{-1} x) + \cos^{-1}(\sin \cos^{-1} x) = \frac{\pi}{2}$ 2

b) Find the equation of an ellipse passing through points (1, 4) & (-3, 2)

- 15)
 - a) If the covariance between two variable x and y is 6 and standard deviation of x & y are 2.45 and 2.61 respectively. Find correlation coefficient.
 - b) In a factory the worker have a 20% chance of suffering from a disease. What is the probability that our of six four or more will contact the disease? Δ

16) Find derivative of:
$$x \cos h^2 \left(\frac{x}{a}\right)$$
.

Solve by separation of variables, the equaton $(x^2 - yx^2) dy + (y^2 + x^2y^2) dx = 0$ 5 17)

18) Max Z = 40 x + 88 ySubject to: $2x + 8y \le 60$ $5x + 2y \le 60$

19) From a point on the ground at a distance x from foot of a vertical wall, a ball is thrown at an angle of 45° which just clear the top of the wall and afterwards sinks the ground at a distance y

on other side. Prove that the height of wall is $\frac{xy}{x+y}$

Group "C"

Long answer questions:

20)

- a) Show that: $1 + \frac{1+2}{2!} + \frac{1+2+3}{3!} + \frac{1+2+3+4}{4!} + \dots = \frac{3e}{2}$
- b) The inverse of the inverse of element of a group is itself. 2 2

c) If
$$a, b \in G$$
 then $(a^*b)^{-1} = b^{-1*}a^{-1}$.

21)

- a) Solve: $\tan(\theta \alpha) \tan(\theta + \alpha) = 1$.
- b) Find the equation of the plane through intersection of plane is 2x y = 0 & 3z y = 0 and perpendicular to plane 4x + 3y - 3z = 8. 3

c) In any triangle ABC, prove by vector method that:
$$\frac{a}{SinA} = \frac{b}{SinB} = \frac{c}{SinC}$$
 3

5

4

2

3X8=24

8X5=40

3

5

a) Using Lagrange's mean value theorem, find a point on the curve $f(x) = \sqrt{x-2}$ in (2, 3) where tangent is parallel to the chord joining the end points of the curve. 4

b) Evaluate:
$$\int \frac{x^4 + 2x^2 + 3}{x^2 + 5x + 6} dx$$

Answers:

Group A

1) (a)	2) (d)	3) (b)	4) (d)
5) (c)	6) (c)	7) (a)	8) (d)
9) (d)	10) (a)	11) (a)	

Group B

Group C

21)			
(a) xπ	(b) $28x - 17y + 9z = 0$		
22)			
(a) $\left(\frac{9}{4}, \frac{1}{2}\right)$	(a) $\left(\frac{9}{4},\frac{1}{2}\right)$		
(b) $\frac{x^3}{3} - \frac{5}{3}$	$\frac{x^2}{2} + 21x - 102\log(x-3) + 27\log(x+z) + c$		