Model Quesiton - 7

Subject : Mathematics XII (Mat. 402/008)

Time : 3 hrs
F.M. 75

Attempt all the questions:

Group "A"

Rewrite the correct option in your answer sheet:

1) If α is a complex number such that: $\alpha^{2}+\alpha+1$ then α^{31} is
a. α
b. α^{2}
c. 0
d. 1
2) There are 5 subjects in a exam. The number of ways in which a student may fail is
a. 16
b. 15
c. 32
d. 31
3) If $\tan (x+y)=33$ and $x=\tan ^{-1} 3$ then $y=$?
a. $3: 10$
b. $\tan ^{-1}\left(\frac{3}{10}\right)$
c. $\tan ^{-1}\left(\frac{3}{8}\right)$
d. $\frac{10}{3}$
4) The curve represented by $x=a \sec t$ and $y=b \tan t$ is
a. circle
b. parabola
c. ellipse
d. hyberbola
5) The d.c.s of any normal to $x y$ plane are
a. $1,0,0$
b. $0,1,0$
c. $0,0,1$
d. 1, 1, 0
6) $(1,0,0) \times(0,1,0)$ equals
a. $(1,1,0)$
b. 0
c. $(0,0,1)$
d. 2
7) The correlation coefficient between two variables x and y is
a. Postive
b. Negative
c. Symmetrical
d.non- Symmetrical
8) The slope of tangent to the curve $y=16-x^{2}$ at $x=0$
a. 0
b. -2
c. 2
d. 16
9) $\int \sin ^{-1} x d x+\int \cos ^{-1} x d x$ equals
a. 0
b. $\frac{\pi}{2}$
c. $\frac{\pi}{2} x$
d. $\frac{\pi}{2} x+c$
10) An LPP is called standard maximization problem if
a. The objective function is to be maximized.
b. All decision variables are non- negative.
c. All constraints are in the form $a_{i} x_{i}+a_{j} x_{j}+\ldots \ldots \ldots+a_{n} x_{n} \leq b$
d. All
11) The resultant of two like parallel forces P and Q is
a. $P+Q$
b. $\mathrm{P}-\mathrm{Q}$
C. $\mathrm{Q}-\mathrm{P}$
d.PQ

Group "B"

Short answer questions:
$8 \times 5=40$
12)
a) If the roots of $a x^{2}+b x+c=0$ be in the ratio $3: 4$. Prove that $12 b^{2}=49 a c$. 3
b) Using Mathematical induction, prove that: $1+3+5+\ldots \ldots \ldots+(2 n-1)=n^{2}$.
13)
a) Find the number of permutations of the digits $1,2,7,2,7,4,5,2$ taken all at a time. 2
b) If the successive coefficients in the expansion of $(1+x)^{n}$ are 28,56 and 70 . Find n. 3
14)
a) Prove that $\sin ^{-1}\left(\cos \sin ^{-1} x\right)+\cos ^{-1}\left(\sin \cos ^{-1} x\right)=\frac{\pi}{2}$
b) Find the equation of an ellipse passing through points $(1,4) \&(-3,2)$
a) If the covariance between two variable x and y is 6 and standard deviation of $x \& y$ are 2.45 and 2.61 respectively. Find correlation coefficient.

1
b) In a factory the worker have a 20% chance of suffering from a disease. What is the probability that our of six four or more will contact the disease?
16) Find derivative of: $x \cosh ^{2}\left(\frac{x}{a}\right)$.
17) Solve by separation of variables, the equaton $\left(x^{2}-y x^{2}\right) d y+\left(y^{2}+x^{2} y^{2}\right) d x=05$
18) $\operatorname{Max} Z=40 x+88 y$

Subject to: $2 x+8 y \leq 60$

$$
\begin{aligned}
& 5 x+2 y \leq 60 \\
& x, y \geq 0
\end{aligned}
$$

19)From a point on the ground at a distance x from foot of a vertical wall, a ball is thrown at an angle of 45° which just clear the top of the wall and afterwards sinks the ground at a distance y on other side. Prove that the height of wall is $\frac{x y}{x+y}$

Group "C"

Long answer questions:

$$
3 \times 8=24
$$

20)

a) Show that: $1+\frac{1+2}{2!}+\frac{1+2+3}{3!}+\frac{1+2+3+4}{4!}+\ldots \ldots .=\frac{3 e}{2}$

4
b) The inverse of the inverse of element of a group is itself.

2
c) If $a, b \in G$ then $\left(a^{*} b\right)^{-1}=b^{-1 *} a^{-1}$.
21)
a) Solve: $\tan (\theta-\alpha) \tan (\theta+\alpha)=1$.
b) Find the equation of the plane through intersection of plane is $2 x-y=0 \& 3 z-y=0$ and perpendicular to plane $4 x+3 y-3 z=8$.
c) In any triangle ABC , prove by vector method that: $\frac{a}{\operatorname{Sin} A}=\frac{b}{\operatorname{Sin} B}=\frac{c}{\operatorname{Sin} C} \quad 3$
a) Using Lagrange's mean value theorem, find a point on the curve $f(x)=\sqrt{x-2}$ in $(2,3)$ where tangent is parallel to the chord joining the end points of the curve. 4
b) Evaluate: $\int \frac{x^{4}+2 x^{2}+3}{x^{2}+5 x+6} d x$

Answers:

Group A

1) (a)	2) (d)	3) (b)	4) (d)
5) (c)	6) (c)	7) (a)	8) (d)
9) (d)	10) (a)	11) (a)	

Group B

| 13) (a) $3360 \quad$ (b) 8 |
| :--- | :--- |
| 14)
 (b) $3 x^{2}+2 y^{2}=35$ |
| 15) (a) $0.9383 \quad$ (b) 0.017 |
| 16) $x^{\cos x^{2}}\left(\frac{x}{a}\right) S \frac{\cosh ^{2}\left(\frac{x}{a}\right)}{x}+\frac{\ln x \sin h \frac{2 a}{a}}{a}$ |
| 18) 840 at (10, 5) |

Group C

21)

(a) $x \pi$
(b) $28 x-17 y+9 z=0$
22)
(a) $\left(\frac{9}{4}, \frac{1}{2}\right)$
(b) $\frac{x^{3}}{3}-\frac{5 x^{2}}{2}+21 x-102 \log (x-3)+27 \log (x+z)+c$

