Model Quesiton – 1

Subject : Mathematics XII	(Mat. 402/008)

Time	: 3 hrs	,		F.M. 75
Atten	npt all the questi	ons:		
		Group	"A"	
Rewr	ite the correct o	otion in your answei	r sheet:	11X1=11
1)	If w be the cub	e roots of unity then t	he value of (1+w – w	$(2^{2})^{7} =$
	a. 128 w	b128w	c. 128 w ²	d128w ²
2)	Number of way	/s in which 4 letters c	an be posted in 3 bo	xes is
	a. 4 ³	b. 3 X 4	c. 3! 4!	d. 3 ⁴
3)	Cosec ⁻¹ (¹ / ₂)			
	a. 30 ⁰	b. 60 ⁰	c. 90 ⁰	d. not defined
4)	The general so	blution of 3 $cosec^2\theta$ –	4 = 0 is	
	a. $n\pi \pm \frac{\pi}{3}$	b. $n\pi + \frac{\pi}{3}$	c. $2n\pi \pm \frac{\pi}{3}$	d. $n\pi \pm (-1)^n \frac{\pi}{3}$
5)	$\vec{a} \times \vec{b}$ is a vector	r		
	a. parallel to	\vec{a}	b.perpendicular to	both $\vec{a} \times \vec{b}$
	c.paralllel to	\vec{b}	d. perpendicular to	\vec{a}
6)	The eccentricity	v of the ellipse $\frac{x^2}{25} + \frac{y}{1}$	$\frac{1}{6}^{2} = 1$ is	
	a. 3	b. $\frac{5}{3}$	c. $\frac{3}{5}$	d. $\frac{4}{5}$

7) The probability of a sure event is

a. 0 b. 1 c.2 d. ½ The degree of the differential equation $\frac{d^2 y}{dx^2} - 3\frac{dy}{dx} + 2 = 0$ is 8) b. 2 c. 3 d. 0 a. 1 According to L'Hospital'r rule the value of $\lim_{x \to \infty} \frac{x^3}{e^3} =$ 9) a. 3 c. 0 b. 2 **d**. ∞ 10) When Gauss forward elimination method is used for solving the equations 3x+4y=5 _ _ (1) and 3y - x = 1 _ _ (2) we apply the operation like a. $eq^{n}(1) + eq^{n}(2)$ b. $eq^{n}(1) + 3 eq^{n}(2)$ c. $eq^{n}(1) + 4 eq^{n}(2)$ d. $eq^{n}(2) + 3 eq^{n}(1)$

11) The amount of gravity exerted by the earth on the mass 5 kg (g = 9.8m/s²) is

a. 4.9 Joule b. 4.9 Newton c. 49 Joule d.49 Newton
OR

For the economic variable in the form of f (Q) = $aQ^2 + bQ + C$, where a,b, c are real numbers and a $\neq 0$, the minimum value attained at

$a.\left(-\frac{b}{2a},\frac{4ac-b^2}{4a}\right)$	$b.\left(\frac{b}{2a},\frac{4ac-b^2}{4a}\right)$
$c.\left(-\frac{b}{2a},\frac{b^2-4ac}{2a}\right)$	$d.\left(\frac{b}{2a},\frac{b^2-4ac}{4a}\right)$

Group "B"

Short answer questions:

12)

- a) Write the middle terms in the expansion of (a+x)ⁿ when n is odd.
- b) Show that the middle term in the expansion of $(1+x)^{2n}$ is $\frac{1\cdot3\cdot5\cdots(2n-1)}{n!}2^n x^n = 3$

13)

- a) State the principle of mathematical induction.
- b) Prove by the method of induction that $1.3 + 2.4 + 3.5 + \dots + n.(n+2) = \frac{n(n+1)(2n+7)}{6}$

14)

- a) Prove that $\cos(\sin^{-1}u + \cos^{-1}v) = v\sqrt{1-u^2} u\sqrt{1-v^2}$
- b) Using Vector method, find the area of the triangle with vertices A(1, 1, 1), B (1, 2, 3) and C (2, 3, 1).

8X5=40

2

2

15) From the following data of marks obtained by 8 students in Comptuer and Mathematics paper 5 compute Spearman rank correlation.

Marks in Computer X)	25	68	45	50	80	74	50	68
Marks in Mathematics (Y)	36	40	57	40	72	75	60	40

	~ `
1	61
	\mathbf{v}_{j}

a) State Rolle's theorem.	
b) Verify Rolle's theorem for the function $f(x) = 3x^2 - 4$ in [-1, 1]	,

17) Evaluate:
$$\int \frac{dx}{(x-1)^2 (x-2)^3}$$
 5

z= 2x + y subject to

$$x{+}2y \le 10, \, x{+}3y \le 12, \, x, \, y=0$$

P, Q are like parallel forces. If P is moved parallel to itself through a discatnce x, show that 19) the resultant of P and Q moves a distance $\frac{Px}{P+Q}$ 5

OR

The demand function for a good is P = 60 - 2Q. fixed cost for a good is Rs. 192 and the variable cost for each additional unit of good is Rs. 20.

- a) Write down the equation for total revenue and total cost in terms of Q. 1
- b) Find the profit function in terms of Q.
- c) Determine the maximum profit.
- d) Present the graph of profit function.

Group "C"

Long answer questions:

20)

- a) Solve by Cramer's rule:
 - 3x + 2y + 9 = 0, 2x 3y + 6 = 02
- b) If the roots of the equation $x^2 + ax + c = 0$ differ by 1, prove that $a^2 = 4c+1$. 4
- c) Prove that every element in a group (G, o) has unique inverse. 4

21)

a) A plane cuts the co ordinate axes at the points A, B, C and the centroid of the triangle ABC is (1, 2, 1). Find the equation of the plane. 2

8×3=24

1

1

2

1 4

5

- b) Reduce the above plane to the normal form and also determine the direction cosines of the normal and the length of the perpendicular to it from the origin.
- c) For what value of K makes the line joining the points (1, 2, K) and (5, 7, 15) perpendicular to the line joining the points (4, 7, 1) and (3, 5, 3)? 4

4

4

- 22)
 - a) Find, from first principles, the differential coefficient of e^{sinx}.

b) Solve:
$$2\frac{dy}{dx} = \frac{y}{x} + \frac{y^2}{x^2}$$

Answers:

Group A

1) (d)	2) (d)	3) (d)	4) (a)
5) (b)	6) (c)	7) (b)	8) (a)
9) (c)	10) (b)	11) (d) OR (a)	

Group B

12)
(a) $c\left(n,\frac{n-1}{2}\right)a^{\frac{n+1}{2}}x^{\frac{n-1}{2}}, c\left(n,\frac{n+1}{2}\right)a^{\frac{n-1}{2}}x^{\frac{n+1}{2}}$
14)
(b) $\frac{\sqrt{21}}{2}$ sq.units
15) 0.61
17) $-\frac{1}{2}\left(\frac{x-1}{x-2}\right)^2 + 3\left(\frac{x-1}{x-2}\right) - 3\log\left(\frac{x-1}{x-2}\right) - \frac{x-2}{x-1} + C$
18) Max. z=12, x = 6, y = 0
19) OR
(a) 60Q −2Q ² , 192 + 20Q
(b) -2Q ² + 40Q - 192
(c) 8

Group C

20)	
(a) (3, 0)	
21)	
(a) $2x + y + 2z = 6$	
(b) $\frac{2x}{3} + \frac{y}{3} + \frac{2z}{3} = 2; \ \frac{2}{3} + \frac{1}{3} + \frac{2}{3}; \ 2$	

(c) 8	
22)	
(a) $e^{\sin x} .\cos x$	
(b) $(y-x)^2 = cxy^2$	